Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
We study 3–dimensional partially hyperbolic diffeomorphisms that are homotopic to the identity, focusing on the geometry and dynamics of Burago and Ivanov’s center stable and center unstable branching foliations. This extends our previous study of the true foliations that appear in the dynamically coherent case. We complete the classification of such diffeomorphisms in Seifert fibered manifolds. In hyperbolic manifolds, we show that any such diffeomorphism is either dynamically coherent and has a power that is a discretized Anosov flow, or is of a new potential class called a double translation.more » « less
-
Abstract We show that if a partially hyperbolic diffeomorphism of a Seifert manifold induces a map in the base which has a pseudo-Anosov component then it cannot be dynamically coherent. This extends [C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie. Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence. Geom. Topol. , to appear] to the whole isotopy class. We relate the techniques to the study of certain partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds performed in [T. Barthelmé, S. Fenley, S. Frankel and R. Potrie. Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part I: The dynamically coherent case. Preprint , 2019, arXiv:1908.06227; Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part II: Branching foliations. Preprint , 2020, arXiv: 2008.04871]. The appendix reviews some consequences of the Nielsen–Thurston classification of surface homeomorphisms for the dynamics of lifts of such maps to the universal cover.more » « less
An official website of the United States government
